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The solution of the contact problems of the theory of elasticity is 

usually based upon the assumption that the body acted upon by a rigid 

stamp is an elastic half-space. The present paper deals with the more 

complicated problem of pressing a stamp of circular cross-section into 

an elastic layer. The method developed in the paper permits to express 

the required displacements and stresses in terms of one auxiliary 

function, which represents the solution of a Fredholm integral equa- 

tion with a continuous symmetrical kernel. A series of numerical 

results is given for the case of a stamp with plane base. 

i. We consider the state of elastic equilibrium of an infinite layer, 

resting on a rigid immovable basis and undergoing deformation under the 

4 

12 

Fig. 1. 

action of a rigid stamp of circular cross-section. It is assumed that 

the contact surface of the stamp is a surface of revolution and that the 

pressing is realized hy means of an axial force (Fig.1). It is further- 

more assumed that there is no friction between the stamp and the layer, 
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although the method offered in the following permits generalization to 
cases of more involved nature (e.g. it is possible to consider layer and 
basis to be in conditions of adhesion). 

Under the assumptions just stated the contact problem can be reduced 
to the integration of equations of the theory of elasticity in cylindri- 
cal coordinates r, #, z with the mixed boundary conditions 

T,, I- 0, 20 = wo-x(r)(r<a), 3*=0 (r>gwhen z= lJ (1.2) 

where (u, 0, w) are the components of the displacement vector in a sys- 
tem of cylindrical coordinates, while uz and 7r are the normal and the 
tangential stress components, respectively, X(r $ the curve determining 
the shape of the pressing surface of the stamp and w0 the displacement 
of the latter in the z-direction. 

l’he radius a of the stamp is considered to be given, which is, in the 
case of a curved shape of the pressing surface of the stamp, equivalent 
to the case of a complete penetration under the action of a sufficiently 
large force P. In the case of an incomplete penetration the problem be- 
comes more complicated insofar as the radius of the boundary circle of 
the contact surface is unknown, so that it must be determined from the 
continuity condition of the normal stresses at the points of the circle 
r = a. 

‘Ihe solution of the problem under consideration is facilitated by the 
use of the harmonic functions of Papkovich and Neuber for the represent- 
ation of the components of the displacement vector. In our case the ex- 
pressions in question assume the form 

ao, 
2[IU = - -Y&- , 2pw== -!$. 3-4(1-Y)@,, &, = @Do + z& (9.3) 

where p is the shear modulus, while v is Poisson’s ratio; a0 and QI are 
functions, harmonic in the layer 0 < z < h. 

Using the relations (1.1) to (1.3), as well as the formulas 

by which the elastic stresses 
just introduced, we arrive at 

EQlz=h, 

are expressed in terms of the functions 
the boundary cor:ditons 

(1.5) 
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[ (1 - 24 01 - a&=0 = 0 (14 

[(3--4v)~,,--(~,],=,=2~[zu,--((r)] when r < a (1.7) 

t 
2 (I- Y) a2 - af-] = = 0 

z 0 when r > a (1.8) 

These conditions lead to a single-valued determination of Q0 and Q1. It 

is assumed that at r -t m the functions @'1 and Qz are of the order 
O(r-I) and their derivatives tend toward O(r-*) at the same limit; this 

assures the necessary behavior of displacements and stresses at infinity. 

3. The solution of the formulated problem is based on its reduction 

to paired integral equations, which admit an exact solution in quadratures 

by means of an auxiliary function satisfying Fredholm's integral equation 

with a continuous symmetrical kernel. 

We seek the harmonic functions Q1 and Qz in the form 
co 

(I))1 = A(h)shh(h-z)J,(hr)-& 
s 
0 

al 
(2-l) 

OS = 
s 

[AhA (A) ch h (1~ - z) + B (h) sh h (h -z)] Jo (hr) -& a. 
0 

where A(X) and B(X) are functions to be determined, while Jo(x) is a 

Bessel function. 

If the functions a1 and Qz are selected in this manner, the boundary 

conditions (1.5) will be satisfied for any values of A(X) and B(X). Of 

the remaining conditions the equation (1.6) permits to derive the rela- 

tion 
13(h) = (1 - 2v -?A ctllhh)A()i) c2.9 

while the conditions (1.7) and (1.8) lead to a system of two integral 

equations for A(h): 
m cn 

s A (A) Jo (hr) dh = f (r) (r <a), s a J, (hr) dh = 0 (r > a) (2.3) 
0 0 

where 

go) = 
)ih + sh hlle-hh 

hh+shhhcilkh IV) = & [wo - x (41 (2.4) 

'Ihe solution of equations (2.3) is again sought in the form* 

A(A)= [l -g((h)]ipji)coshtdt (2.5) 

l See 12 I, 
0 

where an analogous method was used for the solution of a 

problem in electrostatics. 
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where $( t ) is some unknown function, continuous, together with its deri- 

vative, in the closed interval (0, a). 

Integrating the right-hand member of (2.5) by parts and substituting* 

the resulting expression for A(X) into the*second equation of the system 

(2.3), we obtain, for r > a, 

0 0 0 0 

Since, according to a known formula, 

m 

s 0 
J,, (AT) sin ht dh = 

0 
(l2 - r2)--'lr 

the integrals with respect to the variable X are zero. 

Thus one of the paired integral equations 

tally. 

(2.3) is satisfied identi- 

(O<t<r) 

(t > r) (2.6) 

Substitution of A(h) into the first of the equations (2.3) after 

change of order of integration and use of the formulas 

cb 

s 0 
Jo (hr) cm ht dh = 

0 > 4 

0 
(p _ py-‘lr (O<t<r) 

(2.7) 

leads to the relation 

f 

cos (hr sin 0) de (3.8) 

cos ht cos (hr sin 0) dh = f (r} (2.9) 

0 0 0 

Introducing in the first of the integrals a new integration variable 

by substituting t = r sin 8, and denoting by C(x) the Fourier cosine- 

transform of the function g(X), so that 

G(a) =~g(h)coskxdh 
iJ 

(2.10) 

* All computations of this Section are purely formal, but they can be 
easily justified, if we assume the existence of a solution of 
Fredholm’s equation (2.12) continuous, together with its derivative, 

in the closed interval (0. (I). 
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relation (2.9) can be written in the form 
'IaX a 

’ 
s( 

cp(rsin0) -+\v(t)[G(t +rsinO)+G(t- rsinO)]&)clO ==f(r) (2.11) 

0 II 

Putting 

p(?-~~~~l)[G(t+s)+G(t--z)]dt=F(z) (O<z<aa) (2.12) 

0 

we arrive at the integral equation of Schloemilch 

WJ 

s 
F(rsinB)& = f(r) (O<.r<'a) (2.13) 

'Ihe continuous solution of this equation is given by formula [4 ] 

P(z)=+- [j(O) + z"[ f'(ssinU)d~] (2.14) 

0 

After determination of F(x), the equality (2.12) can be considered as 

an integral efnration for the unknown function $s(t). It follows from the 

definition (2.10) of the function Gfxf that the kernel of the ewation 

is a continuous and symmetrical function of the variables x and t. If it 

is possible to find a solution of the integral equation (2.12) in the 

form of a function with a continuous derivative, then the formulas (2.5), 

(2.2) and (2.1) give a complete solution of the contact problem under 

consideration*. 

It should be noted that many quantities, of interest in applications, 

can be expressed itunediately in terms of the function +(t) under omission 

of the intermediate formulas, which is particularly advantageous for 

numerical methods of solving the eqation (2.12). Thus, for instance, 

using formulas (1.4) and (2.61, we easily oLtain the simple formula for 

the distribution of the normal stresses under the punch: 

Particularly simple is the expression obtained for the magnitude of 

the total pressure of the stamp on the layer, numerically equal to the 

applied force P. Integrating (2.15) along the area of the circle of 

radius a, we find 

~=2~~~~~~~~ (2,iltj) 

0 

* If F’(Z) is a continuous function, then it is sufficient to require 

the existence of a continuous solution of the equation (2.12). 
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This is an equation for the determination of the magnitude wo of the 
displacement of the stamp corresponding to a given force o, 

In the case of a stamp with non-plane base in non-complete penetration 
we derive from formula (2.15) the additional equation 

cp (a) = 0 (2.17) 

which follows from the condition of continuity of normal stresses in the 
plane z = 0. In this case the relations (2.16) and &a) = 0 are to be 
used for determination of the displacement ho of the stamp and of the 
radius a of the contact area. 

3. For a stamp with a plane base 

x(r) =O, f(r) = r, 

and the integral equation (2.17) assumes the form 

In further computations it is convenient to use dimensionless quanti- 
ties by introducing 

2 
-= 
a E, 

Equation (3.1) assumes 

4 : 

t %4% 
- = T, ‘p (4 = x (I_ “) 6J (a (3.2) 

a 

then the form 

where 

0 (5) = 1 + n-1 IK (t + 4) + K (z - 01 w (4 dT (0 G f < 1) 
0 

In the case of small values of the parameter p the solution of the 
equation (3.3) can be represented by an expansion into powers of that 
parameter. In the general case it is necessary to use numerical methods; 
this requires in the first place a tabulation of the function X(U) in 
the interval 0 < u < 2. Replacing, furthermore, the value of the integral 
in (3.3) by its approximation obtained by use of the trapezium formula, 
or another quadrature formula, we reduce the problem of determining 
o(r) to that of solving a system of linear equations, which makes it 
possible to set up a table of numerical values of this function with a 
necessary degree of accuracy. 

The formula (Zlti), which gives the required connection between the 
displacement wq of the stamp and the force P, assumes in dimensionless 
variables the form 1 

P(l-vi P 
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Therefore, having a table of the numerical values of the function 

w(r), we will be able without difficulties to compute the corresponding 

values of the coefficient K. 

Following this scheme, computations were carried out for five values 

of the parameter p, from p = 0 to p = 2 at intervals equal to 0.5. The 

value p = 0 corresponds to the case of a stamp acting on an elastic half- 

space. In this case A(u) z 0, o(r) q 1, K = 1. The results of the com- 

putations are given in Tables 1 to 3. It should be noted that Table 1 can 
be used also in the study of the contact problem for a stamp with non- 

plane base. 

TABLE 1. Numerical Values of the Kernel K(u) 

u 

:I 
0:2 

::: 

::5 

z.;: 
0:9 
1.0 
1.1 
1.2 
1.3 
1.4 

i.56 
117 
1.8 

;?I 

- 

-i- 

I 

‘I 

0 
0.1 
0.2 
0.3 
0.4 
0.5 

!z 
0:s 
0.9 
1.0 

p = 0.5 

0.5837 
0.5828 
0.5798 
0.5750 
0.5682 
0.5598 
0.5496 
0.5378 
0.5248 
0.5104 
0.4948 
0.4784 
0.4612 
0.4434 
0.4251 
0.4065 
0.3878 
0.3691 
0.3505 
0.3322 
0.3141 

TABLE 2. Numer ica Values of the Kerne 
- 

- 

p _ 1.0 

1.1674 
1.1596 
1.1364 
1.0991 
1.0495 
0.9897 
0.9224 
0.8502 
0.7757 
0.7010 
0.6282 
0.5587 
0.4937 
0.4339 
0.3795 
0.3308 
0.2877 
0.2498 
0.2168 
0.1883 
0.1640 

1.530 
1.529 
1.527 
1.523 
1.518 
1.511 

11.:095 
I:484 
1.472 
2.460 

7, =- 1.5 

1.7511 
1.7248 
1.6486 
1.5310 
1.3836 
1.2196 
1.0515 
0.8894 
0.7406 
0.6090 
0.4062 
0.4021 
0.3252 
0,2fi35 
0.2148 
0.1767 
0.1472 
0.1243 
0.1065 
0.0925 
0.0816 

r, = 0.5 
/ 

p= i.0 

2.353 
2.348 
2.333 
2.307 
2.272 
2.228 
2.176 
2.118 
2.054 
1.986 
1.915 

- 
p _ 2.0 

2.3349 
2.2728 
2.0990 
1.8448 
1.5513 
1.2565 
0.9873 
0.7591 
0.5753 
0.4336 
0.3279 
0.2512 
0.1962 
0.1571 
0.1291 
0.1088 
0.0939 
0.08’6 
0.0737 

- 

!_ p - 1.5 

3,320 
3.308 
3.272 
3.212 
3.129 
3.025 
2.902 
2.763 
2.61% 
2.454 
2.290 

p-2.0 

4.321 
4.303 
4.246 
4.153 
4.022 
3.854 
3.650 
3.416 
3.157 
2.884 
2.608 
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TABLE 3. 

449 

p / 0 / 0.5 / 1.0 1 1.5 / 2.0 

I i I I I 

x / 1 1 1.51 1 2.20 1 2.95 1 3.72 

4. The general formulas derived in Section 2 permit to consider the 
limiting case h -B 00, investigated in publications of many other authors 
(see e.g. [ 1 ] and [ 3 ] ). For this case the function C(x) P 0 and the 
formula (2.12) gives an explicit expression for the required function, 
namely 

where f(r) is defined by (2.4). 

The required connection between the displacement ~6 of the stamp and 
the force P is determined immediately from (4.1) and (2.16) and we find 

(4.21 

In the case of non-complete penetration of a stamp with non-plane base 
we also have to consider the additional equation (2.17), which in this 
case assumes the form n/2 

Wil 
i 

-== 
a s x’ (a sin 6) d6 

0 

From equations (4.2) and (4.3) we have to find the magnitudes of the 
displacement ~6 of the stamp and of the radius a of the contact area. 
Furthermore, the formulas (4.2) and (4.3) permit also to determine., for 
a given radius a6 of the stamp, the limiting value of the force PO, 
starting from which a complete penetration takes place. 

x/s 
4a,y -- PC- l-v 5 

[a,x'(a, sin e) - sin e (a, sin 0)] d0 (4.4) 
0 

fn conclusion, we give alSO the formula for the normal stresses in the 
contact area (r < a): 

(4.5) 
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